跳到主要內容

[Python實戰應用]掌握Python連結MySQL資料庫的重要操作

Photo by Glenn Carstens-Peters on Unsplash
在現今很多的Python應用當中,像是開發爬蟲獲取網頁資料,或透過API取得所需的資訊等,都有機會將這些有效的資料存進資料庫中,透過其強大的查詢語法篩選、分析及過濾資料,甚至可以直接匯出Excel報表等,資料庫扮演了非常重要的角色。

所以本文將延續瞭解Python存取API的重要觀念-以KKBOX Open API為例文章,模擬實務上呼叫KKBOX Open API取得資料後,如何透過Python存進MySQL資料庫中,並且執行資料的新增、查詢、修改及刪除操作,利用實作來瞭解Python存取資料庫的重要概念,重點包含:
  • Python專案前置作業
  • 安裝MySQL資料庫
  • 建立MySQL資料庫
  • 建立MySQL資料表
  • 新增資料表資料
  • 查詢資料表資料
  • 修改資料表資料
  • 刪除資料表資料

一、Python專案前置作業

在開始今天的實作前,將Python專案中的charts.py簡化為以下範例:

import requests


# 取得Token
def get_access_token():
    #API網址    
    url = "https://account.kkbox.com/oauth2/token" 
    
    #標頭
    headers = {
        "Content-Type": "application/x-www-form-urlencoded",
        "Host": "account.kkbox.com"
    }

    #參數
    data = {
        "grant_type": "client_credentials",
        "client_id": "貼上ID內容",
        "client_secret": "貼上Secret內容"
    }

    access_token = requests.post(url, headers=headers, data=data)
    return access_token.json()["access_token"]
 
 
# 取得該音樂排行榜的歌曲列表
def get_charts_tracks(chart_id):
    access_token = get_access_token()

    url = "https://api.kkbox.com/v1.1/charts/" + chart_id + "/tracks"

    headers = {
        "accept": "application/json",
        "authorization": "Bearer " + access_token
    }

    params = {
        "territory": "TW"
    }

    response = requests.get(url, headers=headers, params=params)
    result = response.json()["data"]

    return result 

二、安裝MySQL資料庫

接下來安裝MySQL資料庫的部分,本文將需特別設定的步驟進行說明,其餘則保留預設值,進行下一步(Next)或執行(Execute)即可。

首先,前往MySQL下載頁面,點選免費使用的社群版下載,如下圖:
進到下載畫面後,選擇Windows的安裝檔,如下圖:
最後下載MSI安裝檔,如下圖:
點擊Download按鈕後,在下一個畫面選擇「No thanks, just start my download.」即可。

開啟安裝檔,會看到如下圖的畫面:
選擇Develop Default,開始進行安裝,基本上都保留預設值即可,過程中有一個步驟是需要設定MySQL資料庫的管理員密碼,如下圖:
設定完成後,在接下來的安裝步驟中,需要驗證密碼,如下圖:
安裝完成後,開啟MySQL的資料庫管理工具 MySQL Workbench,如下圖:
透過這個管理工具,就可以來建立實作所需的資料庫及資料表了。

三、建立MySQL資料庫

點擊MySQL Workbench首頁左下角的Local instance(本地端伺服器)兩下,輸入在安裝過程中設定的資料庫管理員密碼後,即可進到管理的畫面。而建立資料庫的方式,就是點選上方功能列的新增資料庫圖示,如下圖:
輸入資料庫名稱(kkbox)及選擇字元集為utf8,如下圖:
接著點選Apply,資料庫就建立完成。

四、建立MySQL資料表

要在資料庫中建立資料表,需在左邊側欄的地方,切換到Schemas(模式)頁籤,如下圖:
其中可以看到剛剛所建立的資料庫,點選後,選擇Tables(資料表),右鍵新增資料表(Create Table),如下圖:
接著輸入資料表名稱(charts)及定義欄位,如下圖:
輸入完成後,同樣點選右下角的Apply,即完成資料表的建立。

五、新增資料表資料

MySQL資料庫的環境建置完成後,要透過Python進行存取,需要安裝pymysql套件(Package),可以利用 pip install pymysql 指令來達成。接著開啟Python專案,新增一個db.py檔,用來練習接下來的資料庫操作。

Python專案要存取MySQL資料庫,除了引用pymysql模組(Module)外,還需要設定連線的參數,這邊利用Python字典(Dictionary)資料型態來進行設定,如下範例:

import pymysql
import charts

# 資料庫參數設定
db_settings = {
    "host": "127.0.0.1",
    "port": 3306,
    "user": "root",
    "password": "資料庫管理員密碼",
    "db": "kkbox",
    "charset": "utf8"
}
接著,將資料庫參數傳入pymysql模組(Module)connect()方法(Method)中建立Connection物件。另外,在連線的過程中,可能會發生例外錯誤,所以建議使用Pythontry-except例外處理機制,如下範例:

import pymysql
import charts

# 資料庫設定
db_settings = {
    "host": "127.0.0.1",
    "port": 3306,
    "user": "root",
    "password": "資料庫管理員密碼",
    "db": "kkbox",
    "charset": "utf8"
}

try:
    # 建立Connection物件
    conn = pymysql.connect(**db_settings)

except Exception as ex:
    print(ex)
與資料庫的連線建立完成後,要進行相關的操作,需要建立Cursor(指標)物件來執行,這邊使用Pythonwith陳述式,當資料庫存取完成後,自動釋放連線,如下範例:

import pymysql
import charts

# 資料庫設定
db_settings = {
    "host": "127.0.0.1",
    "port": 3306,
    "user": "root",
    "password": "資料庫管理員密碼",
    "db": "kkbox",
    "charset": "utf8"
}

try:
    # 建立Connection物件
    conn = pymysql.connect(**db_settings)

    # 建立Cursor物件
    with conn.cursor() as cursor:

      #資料表相關操作

except Exception as ex:
    print(ex)
接著即可在with陳述式區塊中,撰寫與執行SQL語法,而新增資料至資料表中需執行INSERTSQL語法,如下範例:

    # 建立Connection物件
    conn = pymysql.connect(**db_settings)

    # 建立Cursor物件
    with conn.cursor() as cursor:

        # 新增資料SQL語法
        command = "INSERT INTO charts(id, name, artist)VALUES(%s, %s, %s)"

        # 取得華語單曲日榜
        charts = charts.get_charts_tracks("H_PilcVhX-E8N0qr1-")
        for chart in charts:
            cursor.execute(
                command, (chart["id"], chart["name"], chart["album"]["artist"]["name"]))

        # 儲存變更
        conn.commit()
在第12行以華語單曲日榜的ID為例,呼叫get_charts_tracks()函式取得資料,回傳結果的格式為多筆字典(Dictionary)的串列(List)所以可以透過Python迴圈,利用Cursor(指標)物件執行新增資料的SQL語法,將每筆資料的id、歌曲名稱及歌手寫入資料庫中,最後透過Connection物件的commit()方法儲存

開啟MySQL Workbench的檢視模式,即可看到執行結果,如下範例:
執行結果:

六、查詢資料表資料

將華語單曲日榜的資料成功寫入charts資料表後,要透過Python撈取所有的資料,需執行SELECTSQL語法,最後透過Cursor(指標)物件的fetchall()方法(Method)取回,如下範例:

    # 建立Connection物件
    conn = pymysql.connect(**db_settings)

    # 建立Cursor物件
    with conn.cursor() as cursor:

        # 查詢資料SQL語法
        command = "SELECT * FROM charts"

        # 執行指令
        cursor.execute(command)

        # 取得所有資料
        result = cursor.fetchall()
        print(result)
如果只想取得單筆資料(第一筆),則可以利用fetchone()方法,如下範例:

    # 建立Connection物件
    conn = pymysql.connect(**db_settings)

    # 建立Cursor物件
    with conn.cursor() as cursor:

        # 新增資料指令
        command = "SELECT * FROM charts"

        # 執行指令
        cursor.execute(command)

        # 取得第一筆資料
        result = cursor.fetchone()
        print(result)
而要取得特定筆數的資料,可以透過fetchmany()方法,傳入所需的筆數,如下範例:

    # 建立Connection物件
    conn = pymysql.connect(**db_settings)

    # 建立Cursor物件
    with conn.cursor() as cursor:

        # 新增資料指令
        command = "SELECT * FROM charts"

        # 執行指令
        cursor.execute(command)

        # 取得前五筆資料
        result = cursor.fetchmany(5)
        print(result)
上述的查詢操作,皆是取回資料表中所有的資料,那要執行條件式的資料篩選,則可以加上WHERE語法,並且利用元組(Tuple)資料型態指定條件值,如下範例:

    # 建立Connection物件
    conn = pymysql.connect(**db_settings)

    # 建立Cursor物件
    with conn.cursor() as cursor:

        # 新增資料指令
        command = "SELECT * FROM charts WHERE name = %s"

        # 執行指令
        cursor.execute(command, ("太陽",))

        # 取得所有資料
        result = cursor.fetchall()
        print(result)
執行結果:

七、修改資料表資料

假設要修改charts資料表中,id5XeeDbHfELRucAOX6n的歌曲名稱(name)Learn Code With Mike需執行UPDATESQL語法,並且將主鍵(id)值及要修改的值(name)進行設定,最後透過Connection物件的commit()方法儲存。如下範例:

    # 建立Connection物件
    conn = pymysql.connect(**db_settings)

    # 建立Cursor物件
    with conn.cursor() as cursor:

        # 修改資料SQL語法
        command = "UPDATE charts SET name = %s WHERE id = %s"

        # 執行指令
        cursor.execute(command, ("Learn Code With Mike", "5XeeDbHfELRucAOX6n"))
      
        #儲存變更
        conn.commit()

八、刪除資料表資料

如果要刪除charts資料表中,id-ovxsQyee7WVLKuikC的資料,需執行DELETESQL語法,並且設定主鍵(id)值,最後透過Connection物件的commit()方法儲存。

    # 建立Connection物件
    conn = pymysql.connect(**db_settings)

    # 建立Cursor物件
    with conn.cursor() as cursor:

        # 刪除特定資料指令
        command = "DELETE FROM charts WHERE id = %s"

        # 執行指令
        cursor.execute(command, ("-ovxsQyee7WVLKuikC",))

        #儲存變更
        conn.commit()

九、小結

本文利用實際的案例,從MySQL資料庫的環境建置開始,接著將Python專案中取得的KKBOX Open API資料存進去,並且說明實務上常用的新增、查詢、修改及刪除資料操作,透過本文的教學,相信各位對於Python存取資料庫有了基本的概念。如果在練習的過程中,有遇到任何問題,歡迎留言分享。

如果您喜歡我的文章,請幫我按五下Like(使用GoogleFacebook帳號免費註冊),支持我創作教學文章,回饋由LikeCoin基金會出資,完全不會花到錢,感謝大家。

有想要看的教學內容嗎?歡迎利用以下的Google表單讓我知道,將有機會成為教學文章,分享給大家😊

你可能有興趣的文章









留言

  1. 文章清晰易懂非常有幫助,謝謝您的分享

    回覆刪除
  2. 好棒! 竟然有這樣的資源來帶領我。

    回覆刪除
  3. 想請問如何在vscode上用python連接mysql呢?

    回覆刪除

張貼留言

這個網誌中的熱門文章

[Pandas教學]資料分析必懂的Pandas DataFrame處理雙維度資料方法

Photo by Slidebean on Unsplash 現在有許多的企業或商家,都會利用取得的使用者資料來進行分析,瞭解其中的趨勢或商機,由此可見,資料分析越來越受到重視,而這時候,能夠懂得使用資料分析工具就非常的重要。 在上一篇 [Pandas教學]資料分析必懂的Pandas Series處理單維度資料方法 文章中,分享了Pandas Series資料結構用於處理單維度資料集的實用方法,而本文則要來介紹Pandas套件的另一個非常重要的資料結構,也就是 DataFrame。

[Python教學]搞懂5個Python迴圈常見用法

Photo by Scott Webb on Unsplash 在撰寫程式的過程中,都有機會要重複執行一些相同的運算,但是重複撰寫好幾次同樣的運算看起來非常的沒有效率,所以在這個情況下我們通常會使用迴圈來幫我們完成,本篇就來介紹 Python 迴圈的使用方式,包含 For-Loops 、 Nested Loops 及 while-Loops ,並且說明用來控制迴圈流程的 break 及 continue 指令。 一、 range() 方法 在開始介紹 Python 迴圈之前,先來說明一個在執行迴圈時常用的 range() 方法,主要用來幫我們產生數列,語法如下: range( 起始值 , 結束值 , 遞增 ( 減 ) 值 ) 使用說明: range(20) :起始值預設從 0 開始,所以會產生 0 到 19 的整數序列。 range(10,20) :起始值從 10 開始,所以會產生 10 到 19 的整數序列。 range(10,20,3) :起始值從 10 開始,遞增值為 3 ,所以會產生 10,13,16,19的整數序列 。 二、 Python For-Loops 敘述 可以針對 Iterable( 可疊代的 ) 物件來進行讀取, Python 內建幾個常用的 Iterable 物件,像是 String( 字串 ) 、 List( 串列 ) 、 Tuples( 元組 ) 、 Dictionary( 字典 ) 等,往後會出文章詳細的介紹。 Python for-loop 的語法如下: 在語法中, in 的後方就是 for-loop 要讀取的目標物,這個目標物的為 Iterable ( 可疊代的 ) 物件,一次讀取一個元素,然後用 item( 自訂變數名稱 ) 來接收每次讀取到的元素,執行區塊中的運算。注意 for-loop 的結尾需加上冒號 ( : ) 及區塊中的運算式要有相同的縮排,範例如下: 在範例中, for-loop 的讀取目標物為一個字串,每一次讀取一個字母,並且用 letter 變數來接收,執行 print() 方法。 三、 Python Nested Loops ( 巢狀迴圈 ) 簡單來說,就是迴圈中又有一層迴圈,我們來看一個範例:   這個巢狀迴

[Python物件導向]淺談Python類別(Class)

Photo by Bram Naus on Unsplash 在學習程式語言時,或多或少都有聽過物件導向程式設計 (Object-oriented programming ,簡稱 OOP) ,它是一個具有物件 (Object) 概念的開發方式,能夠提高軟體的重用性、擴充性及維護性,在開發大型的應用程式時更是被廣為使用,所以在現今多數的程式語言都有此種開發方式, Python 當然也不例外。而要使用物件導向程式設計就必須對類別 (Class) 及物件 (Object) 等有一些基本的了解,包含了: 類別 (Class) 物件 (Object) 屬性 (Attribute) 建構式 (Constructor) 方法 (Method) 我們先來看一下今天要來建立的類別: # 汽車類別 class Cars: # 建構式 def __init__(self, color, seat): self.color = color # 顏色屬性 self.seat = seat # 座位屬性 # 方法(Method) def drive(self): print(f"My car is {self.color} and {self.seat} seats.") 接下來就針對類別 (Class) 各個部分來進行介紹。 一、類別 (Class) 簡單來說,就是物件 (Object) 的藍圖 (blueprint) 。就像要生產一部汽車時,都會有設計圖,藉此可以知道此類汽車會有哪些特性及功能,類別 (Class) 就類似設計圖,會定義未來產生物件 (Object) 時所擁有的屬性 (Attribute) 及方法 (Method) 。而定義類別的語法如下: class classname:   statement 首先會有 class 關鍵字,接著自定類別名稱,最後加上冒號。類別名稱的命名原則習慣上使用 Pascal 命名法,也就是每個單字字首大寫,不得使用空白或底線分隔單字,如下範例: #範例一 class Cars: #範例二 class MyCars: 二、物件 (Object) 就是透過

[Python爬蟲教學]7個Python使用BeautifulSoup開發網頁爬蟲的實用技巧

Photo by Stanley Dai on Unsplash 在實務上開發專案時,很多時候會利用其他網站的資料來進行分析或運用,而取得的方式除了透過網站所提供的 API(Application Programming Interface) 外,也可以利用 Python 來開發爬蟲程式,將網頁的 HTML 內容下載下來,接著利用 BeautifulSoup 套件 (Package) ,擷取所需的資訊。 本文將開發一個簡單的爬蟲程式,爬取「 ETtoday 旅遊雲 」網頁,擷取桃園旅遊景點的標題資訊,如下圖: 取自ETtoday 的旅遊雲 而在開發的過程中,常會需要搜尋 HTML 的節點,本文將分享幾個常用的方法,包含: BeautifulSoup 安裝 以 HTML 標籤及屬性搜尋節點 以 CSS 屬性搜尋節點 搜尋父節點 搜尋前、後節點 取得屬性值 取得連結文字 一、 BeautifulSoup 安裝 BeautifulSoup 是一個用來解析 HTML 結構的 Python 套件 (Package) , 將取回的網頁 HTML 結構, 透過其提供的方法 (Method) ,能夠輕鬆的搜尋及擷取網頁上所需的資料,因此廣泛的 應用在網頁爬蟲的開發上 。 Beautifulsoup 套件 (Package) 可以透過 pip 指令來進行安裝,如下範例: pip install beautifulsoup4 而要解析網頁的 HTML 程式碼前,還需要安裝 Python 的 requests 套件 (Package) ,將要爬取的網頁 HTML 程式碼取回來,安裝方式如下: pip install requests 安裝完成後,首先引用 requests 套件 (Package) ,並且 透過 get() 方法 (Method) 存取 ETtoday 旅遊雲的桃園景點網址,如下範例: import requests response = requests.get( "https://travel.ettoday.net/category/%E6%A1%83%E5%9C%92/") 將網頁的 HTML 程式碼取回來後,接著引用 BeautifulSoup

[Python教學]5個必知的Python Function觀念整理

Photo by Susan Holt Simpson on Unsplash 在寫程式碼時有一個非常重要的觀念是 DRY(Don’t Repeat Yourself) ,意思是避免 同樣的程式碼重複出現在很多個地方, 除了可讀性很低外,也不易維護。所以 要適當的進行封裝,來達到程式碼的重用性 (Reusable) 。 今天要來教大家如何建構自己的   Python 函式 (Function) ,就是能夠讓你的程式碼被重複的使用 (Reusable) ,並且提高維護性 及可讀性。其中有五個必須要知道的重要觀念, 包含了: 函式 (Function) 結構 函式(Function) 參數 函式(Function) *args 、 **kwargs 運算子 函式(Function) 種類 函式(Function) 變數範圍 (Scope) 一、函式 (Function) 結構 首先Python 函式 的結構包含了 def 關鍵字、 函式 名稱、參數及實作內容,如下範例: 函式 名稱的命名習慣上會使用小寫字母,並且以底線來分隔單字。參數用來接收外部資料,而實作的內容則是這個 函式 所要執行的任務,需注意縮排。接下來就針對 函式 的各個部分進行詳細的說明。 二、 函式(Function) 參數 參數簡單來說就是接收外部所傳來的資料,進而執行相關的邏輯運算。參數個數取決於 函式 內部運算時所需的資料個數,所以在一般情況下,呼叫 函式 時一定要傳入相對的參數個數資料,否則就會出現例外錯誤,如下範例: 函式 的參數,又可分為: 關鍵字參數 (Keyword Argument) : 呼叫函式時,在傳入參數值的前面加上函式所定義的參數名稱,如下範例。除了提高可讀性外,也可將此種參數打包成 字典 (Dictionary) 資料型態,在等一下的 xargs 、 xxargs 運算子部分會來進行說明。 預設值參數 (Default Argument) : 在函式定義的參數中,將可以選擇性傳入的參數設定一個預設值,當來源端有傳入該資料時,使用來源端的資料,沒有傳入時,則依照設定的預設值來進行運算,如下範例: 範例中沒有傳入日期參數資料,所以 函式 使用預設值 (2019

[Pandas教學]5個實用的Pandas讀取Excel檔案資料技巧

Photo by LinkedIn Sales Navigator on Unsplash 日常生活中,不免俗的都會有需要整理大量資料的需求,而最常用的文書軟體就是Excel,這時候該如何有效讀取Excel檔中的資料,進行額外的整理及操作呢? 本文將以 政府開放資料平台-歷年國內主要觀光遊憩據點遊客人數月別統計 的資料內容為例, 利用Python的Pandas套件,來和大家分享實務上最常見的Excel讀取操作,藉此來提升資料處理的效率。

[Python教學]Python Lambda Function應用技巧分享

Photo by Fatos Bytyqi on Unsplash Lambda 函式,也就是匿名函式,不需要定義名稱,只有一行運算式,語法非常簡潔,功能強大,所以現代程式語言如 Java、C# 及 Python 等都支援 Lambda 函式,適用於小型的運算, Python的 一些內建函式甚至使用它作為參數值的運算。現在就來介紹 如何 在 Python 中使用 Lambda 函式與技巧吧,包含: Lambda 語法與範例 Python Lambda 函式的應用 Lambda 函式 vs 一般函式 (Function) 一、 Lambda 語法與使用範例 由於 Lambda 函式只有一行程式碼,所以在撰寫時有一些限制,我們來看一下它的語法: lambda parameter_list: expression 這邊教大家一個技巧,在撰寫 Lambda 函式時,於 Visual Studio Code 輸入 lambda 關鍵字,接著按下 Tab 鍵,就會自動產生範例中的語法,包含了三個部分: lambda 關鍵字 parameter_list( 參數清單 ) expression( 運算式 ) 其中, parameter_list( 參數清單 ) 也就是 Lambda 函式的傳入參數,可以有多個,以逗號分隔。而 expression( 運算式 ) 則是針對傳入參數來進行運算,只能有一行運算式,不像 一般函式(Function) 可以有多行。接下來,我們透過幾個範例來了解如何使用 Lambda 函式吧。 範例 1 : 範例中將 Lambda 函式指派給一個變數,接著就可以透過此變數並傳入參數來進行呼叫。 範例 2 : Lambda 函式支援 IIFE(immediately invoked function expression)語法 ,意思是 利用  function expression 的方式來建立函式,並且立即執行它,語法如下 : (lambda parameter: expression)(argument) 範例中即是利用此語法在 Lambda函式 定義後,立即傳入參數執行。 範例 3 : 透過此範例可以知道,當 Lambda 函式經定義

[Python+LINE Bot教學]6步驟快速上手LINE Bot機器人

Photo by Yura Fresh on Unsplash 每當朋友或家人要聚餐時,是不是總要花很長的時間尋找評價不錯的餐廳?不但要確認營業時間、消費價格及地點,還要觀看許多的美食文章才有辦法決定,這時候如果有人能夠明確提供幾間符合條件且有人氣的餐廳作為選擇,想必會省事許多。 所以筆者開發了一個美食的 LINE Bot 小作品,透過對談的方式瞭解使用者所要尋找的餐廳條件後,利用 Python 網頁爬蟲取得目前正在營業的五間最高人氣餐廳資料,回覆給使用者作為參考。 為了要讓想學習的您能夠由淺入深,瞭解其中的實作過程,所以將會分成三篇文章來進行教學。 2020/06/30 補充說明 而在進行實作前,先來看一下 LINE Bot 主要的執行架構,如下圖: 使用者透過 LINE 發送訊息時, LINE Platform 將會進行接收,並且傳遞至我們所開發的 LINE Bot 執行邏輯運算後,透過 LINE 所提供的 Messaging API 回應訊息給 LINE Platform ,最後再將訊息傳遞給使用者。 其中 Messaging API(Application Programming Interface) ,就是 LINE 官方定義的 回應訊息 標準介面,包含 Text (文字)、 Sticker (貼圖)、 Video (影片)、 Audio (聲音)及 Template (樣板)訊息等,完整的說明可以參考 LINE 的 官方文件 。 所以在我們的 LINE Bot 回應訊息時,就要依據 Messaging API 定義的規範,傳入相應的參數後, Messaging API 就會回應使用者相對的訊息類型。簡單來說,就是 LINE Platform 與 LINE Bot 的溝通橋樑。 而本文就先以最基本的使用者發送什麼訊息, LINE Bot 就回應什麼訊息為例,讓讀者體會其中的運作方式,整體架構如下圖: 在 LINE Bot 的部分,使用 Django 框架來進行建置,並且透過 Messaging API 回應 Text (文字)訊息。在下一篇文章中,將會加入 Python 網頁爬蟲,取得美食網站的資訊回應給使用者。 本文的實作步驟包含: 建立 Provider 建立 Messaging API channel 設定 LINE Bot 憑證 開發 LINE B

[Python爬蟲教學]整合Python Selenium及BeautifulSoup實現動態網頁爬蟲

Photo by LAUREN GRAY on Unsplash 相信大家都知道,取得資料後能夠進行許多的應用,像是未來的趨勢預測、機器學習或資料分析等,而有效率的取得資料則是這些應用的首要議題,網頁爬蟲則是其中的一個方法。 網頁爬蟲就是能夠取得網頁原始碼中的元素資料技術,但是,有一些網頁較為特別,像是社群平台,需先登入後才能進行資料的爬取,或是電商網站,無需登入,但是要透過滾動捲軸,才會動態載入更多的資料,而要爬取這樣類型的網頁爬蟲,就稱為動態網頁爬蟲。 該如何實作呢? 本文將使用 Python Selenium 及 BeautifulSoup套件 來示範動態網頁爬蟲的開發過程,重點包含: BeautifualSoup vs Selenium 安裝 Selenium 及 Webdriver 安裝 BeautifulSoup Selenium get() 方法 Selenium 元素定位 Selenium send_keys() 方法 Selenium execute_script 方法 BeautifulSoup find_all() 方法 BeautifulSoup getText() 方法 一、 BeautifualSoup vs Selenium BeautifulSoup套件 相信對於 開發 網頁爬蟲的人員來說,應該都有聽過,能夠解析及取得 HTML 原始碼各個標籤的元素資料,擁有非常容易上手的方法 (Method) ,但是,對於想要爬取 動態 網頁資料來說,則無法達成,因為 BeautifulSoup套件 並沒有模擬使用者操作網頁的方法 (Method) ,像是輸入帳號密碼進行登入或滾動捲軸等,來讓網頁動態載入資料,進行爬取的動作。 所以,這時候,就可以使用被設計於自動化測試的 Selenium 套件,來模擬使用者的動作,進行登入後爬取資料或滾動卷軸,並且能夠執行 JavaScript 程式碼,這些就是 Selenium 與 BeautifulSoup套件 最大不同的地方。對於開發 Python 動態爬蟲來說,就可以結合 Selenium套件 以上的特點,讓網頁動態載入資料後,再利用 BeautifulSoup套件簡潔的 方法 (Method) ,將所需的資料爬取下來。 本文就是利用這樣的概念,利用 Selenium 套件登入 Facebook 後,前往

[Python爬蟲教學]有效利用Python網頁爬蟲爬取免費的Proxy IP清單

Photo by Cytonn Photography on Unsplash 在開發網頁爬蟲的過程中,是不是會擔心被偵測或封鎖,而爬不到所需的資料呢? 有些大型網站為了保護網頁上的資料不被大量的爬取,會特別偵測像Python網頁爬蟲這種非人工的自動化請求,這時候 Python網頁爬蟲 使用相同的IP來發送請求就很容易被發現。 所以,如果有多組IP能夠讓Python網頁爬蟲在發送請求時輪流使用,就能夠大幅降低被偵測的風險。 而現在有許多網站上也有提供免費的Proxy IP,本文就以 Free Proxy List 網站為例,透過Python網頁爬蟲來蒐集上面的Proxy IP,製作我們的IP清單。實作步驟包含: