跳到主要內容

[Python+LINE Bot+PostgreSQL教學]一篇搞懂LINE Bot讀取資料庫的方法

python_line_bot_connect_postgresql
Photo by Alvaro Reyes on Unsplash
LINE Bot的自動化回覆訊息特性,使得被廣泛的應用在許多的場景,其中又以推播有價值的資訊為大宗,而這些資料除了可以像[Python+LINE Bot教學]建構具網頁爬蟲功能的LINE Bot機器人文章一樣,利用網路爬蟲即時蒐集外,當資料量非常大或有歷史資料的查詢需求時,也可以將資料儲存至資料庫中,使用者需要時,LINE Bot直接從資料庫中取得即可,提升執行效能。

所以本文將以旅遊景點機器人為例,分享LINE Bot如何讀取PostgreSQL資料庫中的資料,提供給使用者。執行架構如下圖:
python_line_bot_connect_postgresql
上圖中當使用者發送旅遊地區給LINE Bot時,它就會查詢PostgreSQL資料庫中該地區的景點資料,回覆給使用者。其中的實作重點包含:
  • 建立LINE Bot
  • 建立PostgreSQL資料庫
  • LINE Bot連接PostgreSQL
  • LINE Bot查詢PostgreSQL
  • LINE 設定Webhook URL

一、建立LINE Bot

前往LINE Developers,點擊右上角「Log in」,選擇使用LINE帳號登入」後,就可以開始建立LINE Bot了。

[Python+LINE Bot教學]6步驟快速上手LINE Bot機器人文章中,介紹到建立LINE Bot有三個步驟,分別為「建立服務提供者(Provider)「建立頻道(Channel)「連結應用程式(APP),所以,首先需建立服務提供者(Provider),讓LINE官方知道這個LINE Bot是誰提供的,如下圖:
python_line_bot_connect_postgresql
接下來,
建立頻道(Channel),也就是旅遊景點機器人(TripLineBot)的LINE帳號,由於主要為傳遞訊息,所以選擇「Create a Messaging API channel」,如下圖:
python_line_bot_connect_postgresql

選擇後,填寫LINE Bot頻道(Channel)的基本資料,如下圖:
python_line_bot_connect_postgresql

python_line_bot_connect_postgresql
填寫完成點擊「Create」按鈕,LINE平台就會產生專屬於這個LINE Bot的連結資訊,包含:
  • Channel secret(頻道密碼):位於Basic settings頁籤中,如下圖:
python_line_bot_connect_postgresql
  • Channel access token(頻道憑證):位於Messaging API頁籤中,要按下右方的「Issue」按鈕才會出現,如下圖:
python_line_bot_connect_postgresql
最後,就是要利用這兩個資訊來連結應用程式(APP),這個應用程式(APP)也就是接收使用者發送的訊息、執行商業邏輯及回覆訊息的地方。

本文將以Django框架來建置LINE Bot應用程式(APP),首先,利用以下的指令來進行安裝
$ pip install django
接著,安裝line-bot-sdk套件,用來操作LINEMessaging API,回覆使用者訊息,如下
$ pip install line-bot-sdk
安裝完成後,利用以下的指令建立Django專案(bot)及應用程式(triplinebot)
$ django-admin startproject bot .

$ python manage.py startapp triplinebot
使用Visual Studio Code開啟專案,就可以看到目前的專案架構如下圖:
python_line_bot_connect_postgresql
接下來,開啟專案主程式(bot)下的settings.py設定檔,加入應用程式(triplinebot),如下範例
INSTALLED_APPS = [
    'django.contrib.admin',
    'django.contrib.auth',
    'django.contrib.contenttypes',
    'django.contrib.sessions',
    'django.contrib.messages',
    'django.contrib.staticfiles',

    'triplinebot.apps.TriplinebotConfig',
]
並且,新增剛剛所取得的兩個LINE Bot連結資訊,如下範例
LINE_CHANNEL_ACCESS_TOKEN = 'Messaging API的Channel access token'

LINE_CHANNEL_SECRET = 'Basic settings的Channel Secret'
到這邊與LINE Bot應用程式的連結就設定完成了。

二、建立PostgreSQL資料庫

要讓LINE Bot讀取PostgreSQL資料庫,就需要先進行資料庫安裝的動作,可以參考[Django教學15]Django連接PostgreSQL資料庫手把手教學文章的第一節安裝步驟。

接著,開啟PostgreSQL資料庫,在Windows作業系統上,可以在開始的地方搜尋pgAdmin關鍵字或前往安裝路徑(C:\Program Files\PostgreSQL\12\pgAdmin 4\bin),開啟pgAdmin4的執行檔。登入後,可以看到如下圖的畫面:
python_line_bot_connect_postgresql
由於PostgreSQL資料庫為階層式的結構,由上到下依序為伺服器群組(Server Group)、伺服器(Server)與資料庫(Database),所以要建立資料庫(Database),就需要從上到下依序建立。首先,點擊右鍵,選擇建立伺服器群組(Server Group),如下圖:
python_line_bot_connect_postgresql
接著,建立伺服器(Server),在General(一般資訊)的地方輸入名稱,如下圖:
python_line_bot_connect_postgresql
並且,在旁邊的Connection(連線資訊)輸入Server(伺服器)的位址及密碼。由於本文是在本地端執行,所以Server(伺服器)位址為localhost,如下圖:
python_line_bot_connect_postgresql
有了Server(伺服器)後,就可以在它下面建立資料庫(Database),如下圖:
python_line_bot_connect_postgresql
在跳出的視窗中,輸入資料庫名稱(TRIP),儲存即可。完成的PostgreSQL架構如下圖:
python_line_bot_connect_postgresql

三、LINE Bot連接PostgreSQL

LINE BotPostgreSQL資料庫都建置完成後,接下來就要將它們進行連接,而要讓Python所建構的專案能夠與PostgreSQL資料庫進行連接,需要安裝psycopg2套件,如下:
$ pip install psycopg2
一般情況下,Django專案預設連接的資料庫為SQLite資料庫,如果想要更換其它的資料庫,像本文所使用的是PostgreSQL資料庫,可以修改settings.py檔案中,DATABASES的設定
DATABASES = {
    'default': {
        'ENGINE': 'django.db.backends.postgresql',  #PostgreSQL
        'NAME': 'TRIP',  #資料庫名稱
        'USER': 'postgres',  #資料庫帳號
        'PASSWORD': '****',  #資料庫密碼
        'HOST': 'localhost',  #Server(伺服器)位址
        'PORT': '5432'  #PostgreSQL Port號
    }
}
設定完成,LINE Bot就能夠連結PostgreSQL資料庫,這時候,就可以開啟Django應用程式(triplinebot)下的models.py檔案,設計LINE Bot所需要使用的資料表(Table)欄位,如下範例
from django.db import models


class Location(models.Model):
    area = models.CharField(max_length=20)  # 地區
    name = models.CharField(max_length=100)  # 景點名稱
    address = models.CharField(max_length=500)  # 地址
接著,利用以下的指令執行Migration(資料遷移),將Django專案中所設計的Model(資料模型)同步到資料庫中
$ python manage.py makemigrations

$ python manage.py migrate
開啟PostgreSQL資料庫,就可以看到Django專案的Model(資料模型)已同步到資料庫中,如下圖:
python_line_bot_connect_postgresql
藉此也能夠證明,利用Django框架所建置的LINE Bot應用程式可以成功的連接PostgreSQL資料庫。

四、LINE Bot查詢PostgreSQL

接下來,就在triplinebot_location資料表中新增幾筆資料,讓LINE Bot能夠進行查詢。點擊右鍵,選擇「Query Tool(查詢工具)」,如下圖:
python_line_bot_connect_postgresql
這時候就會在右邊的視窗,開啟編輯的畫面,輸入新增資料的SQL指令,如下圖:
python_line_bot_connect_postgresql
範例中新增三個新竹景點及兩個台中景點,完成後點擊鍵盤的F5,執行SQL指令,接著,在triplinebot_location資料表的地方點擊右鍵,選擇「All Rows」查看所有資料,如下圖:
python_line_bot_connect_postgresql
執行結果
python_line_bot_connect_postgresql
從執行結果就可以知道,剛剛所執行的SQL指令,有成功的寫入資料。接下來,開啟Django應用程式(triplinebot)下的views.py檔案,來開發LINE Bot接收使用所發送的地區訊息後,查詢PostgreSQL資料庫中該地區的景點,回覆給使用者,如下範例
from django.shortcuts import render
from django.http import HttpResponse, HttpResponseBadRequest, HttpResponseForbidden
from django.views.decorators.csrf import csrf_exempt
from django.conf import settings
from .models import Location

from linebot import LineBotApi, WebhookParser
from linebot.exceptions import InvalidSignatureError, LineBotApiError
from linebot.models import MessageEvent, TextSendMessage

line_bot_api = LineBotApi(settings.LINE_CHANNEL_ACCESS_TOKEN)
parser = WebhookParser(settings.LINE_CHANNEL_SECRET)


@csrf_exempt
def callback(request):

    if request.method == 'POST':
        signature = request.META['HTTP_X_LINE_SIGNATURE']
        body = request.body.decode('utf-8')

        try:
            events = parser.parse(body, signature)  # 傳入的事件
        except InvalidSignatureError:
            return HttpResponseForbidden()
        except LineBotApiError:
            return HttpResponseBadRequest()

        for event in events:
            if isinstance(event, MessageEvent):  # 如果有訊息事件

                # 篩選location資料表中,地區欄位為使用者發送地區的景點資料
                locations = Location.objects.filter(area=event.message.text)

                content = ''  # 回覆使用者的內容
                for location in locations:
                    content += location.name + '\n' + location.address + '\n\n'

                line_bot_api.reply_message(  # 回覆訊息
                    event.reply_token,
                    TextSendMessage(text=content)
                )
        return HttpResponse()
    else:
        return HttpResponseBadRequest()
範例中,要特別注意的地方是,第5行需引用Location資料模型,這樣LINE Bot才有辦法存取PostgreSQL資料庫中的資料,也就是第33行,篩選Location資料模型對應的triplinebot_location資料表中,地區欄位(area)為使用者所發送的地區(event.message.text)資料,接著,透過Python迴圈,取得景點名稱及地址,組合成字串,回覆給使用者。

LINE Bot其餘程式碼的詳細說明,可以參考[Python+LINE Bot教學]6步驟快速上手LINE Bot機器人文章。

五、LINE 設定Webhook URL

到目前為止,LINE Bot已經能夠連接PostgreSQL資料庫,並且可以依據使用者所發送的地區訊息,查詢資料庫中該地區的景點資料,最後,LINE Bot就需要一組對外的HTTPS網址(URL),讓使用者加入TripLineBot帳號好友後,能夠和LINE Bot進行連接。

Django應用程式(triplinebot)下,新增urls.py檔案,來設定LINE Bot應用程式的網址,如下範例
from django.urls import path
from . import views

urlpatterns = [
    path('callback', views.callback)
]
接著,開啟專案主程式的urls.py檔案,將LINE Bot應用程式的網址進行加入的動作,如下範例
from django.contrib import admin
from django.urls import path, include

urlpatterns = [
    path('admin/', admin.site.urls),
    path('triplinebot/', include('triplinebot.urls')),
]
由於本地端的網址並不是HTTPS的網址,所以,這時候就可以使用[Python+LINE Bot教學]6步驟快速上手LINE Bot機器人文章中所介紹的ngrok工具,來幫忙產生一組隨機的HTTPS網址,如範例
$ ngrok http 8000
執行結果
python_line_bot_connect_postgresql
簡單來說,ngrok工具能夠利用本地端的IP埠號,隨機產生一組對外開放(Public)HTTPS網址,這樣外部的所有使用者就可以存取本地端所執行的服務。

有了HTTPS網址後,前往LINE Developers,在TripLineBotMessaging API頁籤下,有一個Webhook URL欄位,填寫LINE BotHTTPS網址,如下範例:
python_line_bot_connect_postgresql
另外,要讓Django專案允許這個網域,所以需開啟settings.py檔案,在ALLOWED_HOSTS的地方進行加入,如下範例
ALLOWED_HOSTS = [
    '7075cc1c2962.ngrok.io'
]
填寫完成後,就可以在LINE Developers,掃描Messaging API頁籤下的QR code,加入好友後,就可以發送地區訊息給LINE Bot,讓它幫您尋找PostgreSQL資料庫中,該地區的景點資料了,如下圖:
python_line_bot_connect_postgresql

六、小結

透過本文的範例教學,相信對於LINE Bot如何存取資料庫中的資料,進而回覆給使用者有價值的資訊,有基本的瞭解,大家趕快來依照本文的實作步驟,建立一個有趣的LINE Bot吧 :)

如果您喜歡我的文章,請幫我按五下Like(使用GoogleFacebook帳號免費註冊),支持我創作教學文章,回饋由LikeCoin基金會出資,完全不會花到錢,感謝大家。

有想要看的教學內容嗎?歡迎利用以下的Google表單讓我知道,將有機會成為教學文章,分享給大家😊









留言

  1. 版主您好,我按照您的步驟下去實作一個一模一樣的練習機器人出現了一個問題,當我引用Location 資料模型時出現了 Class 'Location' has no 'objects' member,想請問版主我是哪邊步驟錯了嗎?還是另有問題?

    回覆刪除
    回覆
    1. 您好: 可能的原因是文章第三節的部分實作有問題,也就是Django沒有成功的連結到PostgreSQL或沒有正確的執行Migration,可以檢查當您執行python migrate指令後,PostgreSQL資料庫是否有出現triplinebot_location資料表,如果沒有的話,建議重新建立Django專案,執行Migration,如果問題還是尚未解決,歡迎到Learn Code With Mike粉絲專頁私訊我,將協助您找出問題,謝謝 :)

      刪除
  2. 作者已經移除這則留言。

    回覆刪除
  3. 請問一下我照著步驟做到最後都可以
    但是做完之後有些功能會沒辦法使用
    for event in events:
    if isinstance(event, MessageEvent):

    # 篩選location資料表中,地區欄位為使用者發送地區的景點資料
    locations = Location.objects.filter(area=event.message.text)

    content = '' # 回覆使用者的內容
    for location in locations:
    content += location.name + '\n' + location.address + '\n\n'

    line_bot_api.reply_message( # 回覆訊息
    event.reply_token,
    TextSendMessage(text=content)
    )
    if isinstance(event.message, TextMessage):
    mtext = event.message.text
    if mtext == '@按鈕樣板':
    func.sendButton(event)
    elif mtext == '@確認樣板':
    func.sendConfirm(event)

    return HttpResponse()

    else:
    return HttpResponseBadRequest()

    回覆刪除
  4. 請問在【一、建立LINE Bot】輸入以下的內容是在settings.py的那一個段落加入以下的文字,謝謝
    【並且,新增剛剛所取得的兩個LINE Bot連結資訊,如下範例:
    LINE_CHANNEL_ACCESS_TOKEN = 'Messaging API的Channel access token'

    LINE_CHANNEL_SECRET = 'Basic settings的Channel Secret'】

    回覆刪除
  5. 如果使用mysql 程式碼也是一樣的嗎?

    回覆刪除

張貼留言

這個網誌中的熱門文章

[Pandas教學]資料分析必懂的Pandas DataFrame處理雙維度資料方法

Photo by Slidebean on Unsplash 現在有許多的企業或商家,都會利用取得的使用者資料來進行分析,瞭解其中的趨勢或商機,由此可見,資料分析越來越受到重視,而這時候,能夠懂得使用資料分析工具就非常的重要。 在上一篇 [Pandas教學]資料分析必懂的Pandas Series處理單維度資料方法 文章中,分享了Pandas Series資料結構用於處理單維度資料集的實用方法,而本文則要來介紹Pandas套件的另一個非常重要的資料結構,也就是 DataFrame。

[Python教學]搞懂5個Python迴圈常見用法

Photo by Scott Webb on Unsplash 在撰寫程式的過程中,都有機會要重複執行一些相同的運算,但是重複撰寫好幾次同樣的運算看起來非常的沒有效率,所以在這個情況下我們通常會使用迴圈來幫我們完成,本篇就來介紹 Python 迴圈的使用方式,包含 For-Loops 、 Nested Loops 及 while-Loops ,並且說明用來控制迴圈流程的 break 及 continue 指令。 一、 range() 方法 在開始介紹 Python 迴圈之前,先來說明一個在執行迴圈時常用的 range() 方法,主要用來幫我們產生數列,語法如下: range( 起始值 , 結束值 , 遞增 ( 減 ) 值 ) 使用說明: range(20) :起始值預設從 0 開始,所以會產生 0 到 19 的整數序列。 range(10,20) :起始值從 10 開始,所以會產生 10 到 19 的整數序列。 range(10,20,3) :起始值從 10 開始,遞增值為 3 ,所以會產生 10,13,16,19的整數序列 。 二、 Python For-Loops 敘述 可以針對 Iterable( 可疊代的 ) 物件來進行讀取, Python 內建幾個常用的 Iterable 物件,像是 String( 字串 ) 、 List( 串列 ) 、 Tuples( 元組 ) 、 Dictionary( 字典 ) 等,往後會出文章詳細的介紹。 Python for-loop 的語法如下: 在語法中, in 的後方就是 for-loop 要讀取的目標物,這個目標物的為 Iterable ( 可疊代的 ) 物件,一次讀取一個元素,然後用 item( 自訂變數名稱 ) 來接收每次讀取到的元素,執行區塊中的運算。注意 for-loop 的結尾需加上冒號 ( : ) 及區塊中的運算式要有相同的縮排,範例如下: 在範例中, for-loop 的讀取目標物為一個字串,每一次讀取一個字母,並且用 letter 變數來接收,執行 print() 方法。 三、 Python Nested Loops ( 巢狀迴圈 ) 簡單來說,就是迴圈中又有一層迴圈,我們來看一個範例:   這個巢狀迴

[Python物件導向]淺談Python類別(Class)

Photo by Bram Naus on Unsplash 在學習程式語言時,或多或少都有聽過物件導向程式設計 (Object-oriented programming ,簡稱 OOP) ,它是一個具有物件 (Object) 概念的開發方式,能夠提高軟體的重用性、擴充性及維護性,在開發大型的應用程式時更是被廣為使用,所以在現今多數的程式語言都有此種開發方式, Python 當然也不例外。而要使用物件導向程式設計就必須對類別 (Class) 及物件 (Object) 等有一些基本的了解,包含了: 類別 (Class) 物件 (Object) 屬性 (Attribute) 建構式 (Constructor) 方法 (Method) 我們先來看一下今天要來建立的類別: # 汽車類別 class Cars: # 建構式 def __init__(self, color, seat): self.color = color # 顏色屬性 self.seat = seat # 座位屬性 # 方法(Method) def drive(self): print(f"My car is {self.color} and {self.seat} seats.") 接下來就針對類別 (Class) 各個部分來進行介紹。 一、類別 (Class) 簡單來說,就是物件 (Object) 的藍圖 (blueprint) 。就像要生產一部汽車時,都會有設計圖,藉此可以知道此類汽車會有哪些特性及功能,類別 (Class) 就類似設計圖,會定義未來產生物件 (Object) 時所擁有的屬性 (Attribute) 及方法 (Method) 。而定義類別的語法如下: class classname:   statement 首先會有 class 關鍵字,接著自定類別名稱,最後加上冒號。類別名稱的命名原則習慣上使用 Pascal 命名法,也就是每個單字字首大寫,不得使用空白或底線分隔單字,如下範例: #範例一 class Cars: #範例二 class MyCars: 二、物件 (Object) 就是透過

[Python爬蟲教學]7個Python使用BeautifulSoup開發網頁爬蟲的實用技巧

Photo by Stanley Dai on Unsplash 在實務上開發專案時,很多時候會利用其他網站的資料來進行分析或運用,而取得的方式除了透過網站所提供的 API(Application Programming Interface) 外,也可以利用 Python 來開發爬蟲程式,將網頁的 HTML 內容下載下來,接著利用 BeautifulSoup 套件 (Package) ,擷取所需的資訊。 本文將開發一個簡單的爬蟲程式,爬取「 ETtoday 旅遊雲 」網頁,擷取桃園旅遊景點的標題資訊,如下圖: 取自ETtoday 的旅遊雲 而在開發的過程中,常會需要搜尋 HTML 的節點,本文將分享幾個常用的方法,包含: BeautifulSoup 安裝 以 HTML 標籤及屬性搜尋節點 以 CSS 屬性搜尋節點 搜尋父節點 搜尋前、後節點 取得屬性值 取得連結文字 一、 BeautifulSoup 安裝 BeautifulSoup 是一個用來解析 HTML 結構的 Python 套件 (Package) , 將取回的網頁 HTML 結構, 透過其提供的方法 (Method) ,能夠輕鬆的搜尋及擷取網頁上所需的資料,因此廣泛的 應用在網頁爬蟲的開發上 。 Beautifulsoup 套件 (Package) 可以透過 pip 指令來進行安裝,如下範例: pip install beautifulsoup4 而要解析網頁的 HTML 程式碼前,還需要安裝 Python 的 requests 套件 (Package) ,將要爬取的網頁 HTML 程式碼取回來,安裝方式如下: pip install requests 安裝完成後,首先引用 requests 套件 (Package) ,並且 透過 get() 方法 (Method) 存取 ETtoday 旅遊雲的桃園景點網址,如下範例: import requests response = requests.get( "https://travel.ettoday.net/category/%E6%A1%83%E5%9C%92/") 將網頁的 HTML 程式碼取回來後,接著引用 BeautifulSoup

[Python教學]5個必知的Python Function觀念整理

Photo by Susan Holt Simpson on Unsplash 在寫程式碼時有一個非常重要的觀念是 DRY(Don’t Repeat Yourself) ,意思是避免 同樣的程式碼重複出現在很多個地方, 除了可讀性很低外,也不易維護。所以 要適當的進行封裝,來達到程式碼的重用性 (Reusable) 。 今天要來教大家如何建構自己的   Python 函式 (Function) ,就是能夠讓你的程式碼被重複的使用 (Reusable) ,並且提高維護性 及可讀性。其中有五個必須要知道的重要觀念, 包含了: 函式 (Function) 結構 函式(Function) 參數 函式(Function) *args 、 **kwargs 運算子 函式(Function) 種類 函式(Function) 變數範圍 (Scope) 一、函式 (Function) 結構 首先Python 函式 的結構包含了 def 關鍵字、 函式 名稱、參數及實作內容,如下範例: 函式 名稱的命名習慣上會使用小寫字母,並且以底線來分隔單字。參數用來接收外部資料,而實作的內容則是這個 函式 所要執行的任務,需注意縮排。接下來就針對 函式 的各個部分進行詳細的說明。 二、 函式(Function) 參數 參數簡單來說就是接收外部所傳來的資料,進而執行相關的邏輯運算。參數個數取決於 函式 內部運算時所需的資料個數,所以在一般情況下,呼叫 函式 時一定要傳入相對的參數個數資料,否則就會出現例外錯誤,如下範例: 函式 的參數,又可分為: 關鍵字參數 (Keyword Argument) : 呼叫函式時,在傳入參數值的前面加上函式所定義的參數名稱,如下範例。除了提高可讀性外,也可將此種參數打包成 字典 (Dictionary) 資料型態,在等一下的 xargs 、 xxargs 運算子部分會來進行說明。 預設值參數 (Default Argument) : 在函式定義的參數中,將可以選擇性傳入的參數設定一個預設值,當來源端有傳入該資料時,使用來源端的資料,沒有傳入時,則依照設定的預設值來進行運算,如下範例: 範例中沒有傳入日期參數資料,所以 函式 使用預設值 (2019

[Pandas教學]5個實用的Pandas讀取Excel檔案資料技巧

Photo by LinkedIn Sales Navigator on Unsplash 日常生活中,不免俗的都會有需要整理大量資料的需求,而最常用的文書軟體就是Excel,這時候該如何有效讀取Excel檔中的資料,進行額外的整理及操作呢? 本文將以 政府開放資料平台-歷年國內主要觀光遊憩據點遊客人數月別統計 的資料內容為例, 利用Python的Pandas套件,來和大家分享實務上最常見的Excel讀取操作,藉此來提升資料處理的效率。

[Python教學]Python Lambda Function應用技巧分享

Photo by Fatos Bytyqi on Unsplash Lambda 函式,也就是匿名函式,不需要定義名稱,只有一行運算式,語法非常簡潔,功能強大,所以現代程式語言如 Java、C# 及 Python 等都支援 Lambda 函式,適用於小型的運算, Python的 一些內建函式甚至使用它作為參數值的運算。現在就來介紹 如何 在 Python 中使用 Lambda 函式與技巧吧,包含: Lambda 語法與範例 Python Lambda 函式的應用 Lambda 函式 vs 一般函式 (Function) 一、 Lambda 語法與使用範例 由於 Lambda 函式只有一行程式碼,所以在撰寫時有一些限制,我們來看一下它的語法: lambda parameter_list: expression 這邊教大家一個技巧,在撰寫 Lambda 函式時,於 Visual Studio Code 輸入 lambda 關鍵字,接著按下 Tab 鍵,就會自動產生範例中的語法,包含了三個部分: lambda 關鍵字 parameter_list( 參數清單 ) expression( 運算式 ) 其中, parameter_list( 參數清單 ) 也就是 Lambda 函式的傳入參數,可以有多個,以逗號分隔。而 expression( 運算式 ) 則是針對傳入參數來進行運算,只能有一行運算式,不像 一般函式(Function) 可以有多行。接下來,我們透過幾個範例來了解如何使用 Lambda 函式吧。 範例 1 : 範例中將 Lambda 函式指派給一個變數,接著就可以透過此變數並傳入參數來進行呼叫。 範例 2 : Lambda 函式支援 IIFE(immediately invoked function expression)語法 ,意思是 利用  function expression 的方式來建立函式,並且立即執行它,語法如下 : (lambda parameter: expression)(argument) 範例中即是利用此語法在 Lambda函式 定義後,立即傳入參數執行。 範例 3 : 透過此範例可以知道,當 Lambda 函式經定義

[Python+LINE Bot教學]6步驟快速上手LINE Bot機器人

Photo by Yura Fresh on Unsplash 每當朋友或家人要聚餐時,是不是總要花很長的時間尋找評價不錯的餐廳?不但要確認營業時間、消費價格及地點,還要觀看許多的美食文章才有辦法決定,這時候如果有人能夠明確提供幾間符合條件且有人氣的餐廳作為選擇,想必會省事許多。 所以筆者開發了一個美食的 LINE Bot 小作品,透過對談的方式瞭解使用者所要尋找的餐廳條件後,利用 Python 網頁爬蟲取得目前正在營業的五間最高人氣餐廳資料,回覆給使用者作為參考。 為了要讓想學習的您能夠由淺入深,瞭解其中的實作過程,所以將會分成三篇文章來進行教學。 2020/06/30 補充說明 而在進行實作前,先來看一下 LINE Bot 主要的執行架構,如下圖: 使用者透過 LINE 發送訊息時, LINE Platform 將會進行接收,並且傳遞至我們所開發的 LINE Bot 執行邏輯運算後,透過 LINE 所提供的 Messaging API 回應訊息給 LINE Platform ,最後再將訊息傳遞給使用者。 其中 Messaging API(Application Programming Interface) ,就是 LINE 官方定義的 回應訊息 標準介面,包含 Text (文字)、 Sticker (貼圖)、 Video (影片)、 Audio (聲音)及 Template (樣板)訊息等,完整的說明可以參考 LINE 的 官方文件 。 所以在我們的 LINE Bot 回應訊息時,就要依據 Messaging API 定義的規範,傳入相應的參數後, Messaging API 就會回應使用者相對的訊息類型。簡單來說,就是 LINE Platform 與 LINE Bot 的溝通橋樑。 而本文就先以最基本的使用者發送什麼訊息, LINE Bot 就回應什麼訊息為例,讓讀者體會其中的運作方式,整體架構如下圖: 在 LINE Bot 的部分,使用 Django 框架來進行建置,並且透過 Messaging API 回應 Text (文字)訊息。在下一篇文章中,將會加入 Python 網頁爬蟲,取得美食網站的資訊回應給使用者。 本文的實作步驟包含: 建立 Provider 建立 Messaging API channel 設定 LINE Bot 憑證 開發 LINE B

[Python爬蟲教學]整合Python Selenium及BeautifulSoup實現動態網頁爬蟲

Photo by LAUREN GRAY on Unsplash 相信大家都知道,取得資料後能夠進行許多的應用,像是未來的趨勢預測、機器學習或資料分析等,而有效率的取得資料則是這些應用的首要議題,網頁爬蟲則是其中的一個方法。 網頁爬蟲就是能夠取得網頁原始碼中的元素資料技術,但是,有一些網頁較為特別,像是社群平台,需先登入後才能進行資料的爬取,或是電商網站,無需登入,但是要透過滾動捲軸,才會動態載入更多的資料,而要爬取這樣類型的網頁爬蟲,就稱為動態網頁爬蟲。 該如何實作呢? 本文將使用 Python Selenium 及 BeautifulSoup套件 來示範動態網頁爬蟲的開發過程,重點包含: BeautifualSoup vs Selenium 安裝 Selenium 及 Webdriver 安裝 BeautifulSoup Selenium get() 方法 Selenium 元素定位 Selenium send_keys() 方法 Selenium execute_script 方法 BeautifulSoup find_all() 方法 BeautifulSoup getText() 方法 一、 BeautifualSoup vs Selenium BeautifulSoup套件 相信對於 開發 網頁爬蟲的人員來說,應該都有聽過,能夠解析及取得 HTML 原始碼各個標籤的元素資料,擁有非常容易上手的方法 (Method) ,但是,對於想要爬取 動態 網頁資料來說,則無法達成,因為 BeautifulSoup套件 並沒有模擬使用者操作網頁的方法 (Method) ,像是輸入帳號密碼進行登入或滾動捲軸等,來讓網頁動態載入資料,進行爬取的動作。 所以,這時候,就可以使用被設計於自動化測試的 Selenium 套件,來模擬使用者的動作,進行登入後爬取資料或滾動卷軸,並且能夠執行 JavaScript 程式碼,這些就是 Selenium 與 BeautifulSoup套件 最大不同的地方。對於開發 Python 動態爬蟲來說,就可以結合 Selenium套件 以上的特點,讓網頁動態載入資料後,再利用 BeautifulSoup套件簡潔的 方法 (Method) ,將所需的資料爬取下來。 本文就是利用這樣的概念,利用 Selenium 套件登入 Facebook 後,前往

[Python爬蟲教學]有效利用Python網頁爬蟲爬取免費的Proxy IP清單

Photo by Cytonn Photography on Unsplash 在開發網頁爬蟲的過程中,是不是會擔心被偵測或封鎖,而爬不到所需的資料呢? 有些大型網站為了保護網頁上的資料不被大量的爬取,會特別偵測像Python網頁爬蟲這種非人工的自動化請求,這時候 Python網頁爬蟲 使用相同的IP來發送請求就很容易被發現。 所以,如果有多組IP能夠讓Python網頁爬蟲在發送請求時輪流使用,就能夠大幅降低被偵測的風險。 而現在有許多網站上也有提供免費的Proxy IP,本文就以 Free Proxy List 網站為例,透過Python網頁爬蟲來蒐集上面的Proxy IP,製作我們的IP清單。實作步驟包含: